The Four Pillars of a Terminal Crimp. Part Three.

Pillar Three: Measured and Mechanical Specifications.

In Part One of our series: The Four Pillars of a Terminal Crimp, we explored the five elements of a Terminal Crimp: Wire, Terminal, Crimp Tooling (Applicator), Crimp Press and Crimp Operator (bench press and automatic processing). We discussed the need for all elements to be in full statistical control. Any one element that is out of control can affect crimp quality.

In Part Two, we discussed visual specifications, the first of two core measurements of crimp quality.

Part three is the second group of core measurements. Measured and mechanical specifications include Conductor and Insulation Height and Width and Pull/Tensile Test. Also we will cover conductor compaction as part of measurement criteria that makes up the conductor crimp height and width criteria.

Conductor Crimp Measurements.

Conductor Crimp Measurements include Crimp Height and width. The measurement of crimp height is accomplished with crimp height micrometers that have a point on the spindle and a flat on the anvil. Place the point in the center of the bottom side of the crimp. The flat on the anvil bridges the crimp legs on the top of the crimp.

Conductor Crimp Height can be measured with calipers or blade micrometers.

Conductor Crimp Height
Conductor Crimp Width

Conductor Crimp Width and Height are defined by the terminal manufacturer and need to be followed to ensure acceptable electrical performance. Conductor Crimp Width is a good indicator of tool wear.

Insulation Height and Width can be measured with calipers or blade micrometers.

Insulation Crimp Height
Insulation Crimp Width

Pull/Tensile Test.

Pull Test is a destructive test designed to determine the mechanical strength of a terminal crimp. A good mechanical crimp assures the crimp can withstand the normal handling and installation process. Pull Test is not an accurate indicator of electrical performance. Conductor Crimp Height and Pull Test (in that order) are the primary set up validation and in process measurements. Crimp Height is performed with the insulation support disengaged. For information, see our article Pull Test Putting it into Perspective.

For accurate Pull Test Measurement, disengage the Insulation Support
Motorized Pull Testers remove operator variability.

Conductor Compaction.

A crimped terminal with low electrical resistance must exhibit a few internal attributes:

  1. All individual strands must be touching each other and compressed from their original round shape.
  2. No air gaps.
  3. Crimp Legs must only touch the conductor strands and not the sides or bottom of the crimp.
  4. Crimp Legs must be locked together with no gap on the top of the crimp.

If the wire strands are not compressed, there is gaps in the crimp or the crimp legs contact the sides or bottom of the crimp, it is possible that the wire is too small for the crimp barrel.

Internal Crimp Characteristics are determined using Cross Section Analysis.

Visual and Measured Specifications are important factors in a quality crimp that provides good electrical performance. It is critical that all factors are validated prior to production and monitored in-process, Pillar Four will cover in process monitoring techniques and the technology used for in process monitoring.

WireProcess Specialties has over four decades of experience in crimping technologies and crimp quality. Crimp Quality Solutions provides a path to a higher quality standard.

Connect with WireProcess Specialties to get started.

Watch out for Pillar Four coming soon.

The Four Pillars of a Terminal Crimp. Part Two.

Pillar Two: Visual Specifications.

In Part One of our series: The Four Pillars of a Terminal Crimp, we explored the five elements of a Terminal Crimp: Wire, Terminal, Crimp Tooling (Applicator), Crimp Press and Crimp Operator (bench press and automatic processing). We discussed the need for all elements to be in full statistical control. Any one element that is out of control can affect crimp quality.

Visual Specifications are one of two core measurement types that assure a quality crimp from a mechanical and electrical performance perspective. We will cover the second core grouping in part three.

Visual Specifications provide an assurance the wire is crimped in the right position. An improperly positioned crimp can affect electrical and mechanical properties over the expected life of the electrical assembly. The position of the wire crimped to the terminal can also provide an indication of crimp tool set up. For open barrel style terminals, here are the visual specifications:

Brush: Brush is the end of conductor that protrudes out of the conductor barrel on the contact side. Brush must be present but not in a position that interferes with the working of the contact.


Bell Mouth: Bell Mouth is formed from the crimp tools and is designed to protect the conductor strands during the crimp process. Bell Mouth is acceptable on both sides of the conductor crimp but required on the insulation side of the crimp.

Bell Mouth

Insulation Position: Insulation and wire must be present in the area between the conductor and insulation crimp barrels. Insulation must not be present inside the conductor crimp. Equal wire and insulation is preferable.

Insulation Position

Visual attributes are critical in the pre-production validation and in process inspection of a terminal crimp. These attributes are also used in the maintenance of applicator tooling.

Visual Images are part of DocuCrimp a snapshot of a terminal crimp at a point in time. DocuCrimp includes visual images, pull test force chart and Cross Section analysis.

Crimp Quality Solutions is our suite of services to support the Terminal Crimp process. WireProcess Specialties is committed to helping companies to produce the highest quality wire assemblies available. Let’s get started today.

The Four Pillars of a Terminal Crimp. Part One.

Pillar One: Crimp Elements

The process of crimping a terminal to a wire seems simple enough. Take a connector and a crimp tool and press that terminal around a wire. Do you assume that as long as it is secure on the wire, it is a quality connection?

But is it a Quality Crimped Connection?

This is the first of a four part deep dive into the pillars of a Quality Terminal Crimp. This article will introduce Crimp Elements as the initial pillar.

A crimp is characterized by five elements: Wire, Terminal, Application Tooling, Crimping Press and Operator (or automated processing machine).


The wire construction as well as the processing (cut and strip) quality are critical to crimp quality.

Wire Construction includes the wire OD, Insulation, Concentricity, Strand Count and Internal Wire Twist. Process variables include cut and strip quality, strip length (and strip length repeatability).


The terminal construction (material type and thickness) is important as is the proper wire/terminal match. We will dive deeper into the implications of a mis-matched wire in part 3 of this series.

Wire and Terminals

Application Tooling.

An applicator is the heart of the mechanical part of the crimp process. Tooling rated for the terminal and wire match, the applicator set up and maintenance are all critical to a repeatable crimp process. A poorly maintained applicator can cause poor crimp results.

Terminal Crimp Applicator.

Crimp Press.

The crimp press is subject to thousands if not millions of crimps per year. Like the applicator, the press is subject to wear over time. Wear parts include the base plate and ram adaptors and moving components like the ram and crank shaft.

Keeping the press lubricated and checking for wear should be regularly scheduled. These tasks assure that the press provides repeatable press force and shut height.

Presses should also be calibrated annually. Using a digital press analyzer combines press calibration along with capability studies of press shut height and force. This provides evidence of press repeatability and allows maintenance to prioritize press maintenance.

Crimp Press with Network Interface.

Crimp Operator.

The operator of the crimp press has a critical role in crimp quality. The operator must inspect the wire to ensure there are no defects in the wire. Then the wire is crimped to the terminal and a visual inspection is needed. Training on machine operation and quality inspection is essential.

In the case of an automated machine, the operator is replaced by robotic arms that must be aligned to assure the wire is presented in the correct orientation (front to back and side to side).

Crimp Quality: The sum capability of all elements.

Crimp Quality depends on all elements being in full statistical control. For example:

  • Wire gauge is within rated specification of the terminal.
  • Wire is stripped to the specified strip length with no nicks, strands or scrapes.
  • Crimp Tooling is properly maintained and correctly set up.
  • Crimp Press has been inspected for wear, lubricated, calibrated and capability studies show press shut height and force repeatability is within statistical limits.
  • Operators and Maintenance are trained in the set up and operation of crimping equipment.

Pillar One represents the basic elements of crimping, their relationship to one another and the importance of all elements being in control. Crimp Quality Solutions is your source for training, crimp validation services and consulting on crimp quality. Watch for Part Two coming soon.

From WireProcess Specialties, providing solutions for wire harness assembly for over four decades.

DocuCrimp. A snapshot of Crimp Quality.

The process of crimping a terminal to a wire is a time tested procedure used in the production of a wire harness. The physics behind a terminal crimp has been established for many decades.

Reliable terminal crimping is critical to electrical circuits that meet or exceed the performance expected from the electrical device that they power. It only takes one defective crimp to render a wire harness useless. And raise the risk of injury and/or damage to the device or operator using the device.

Although the physics of crimping is time tested, pre-production validation, in-process monitoring and quality documentation has evolved over the past number of years. Validation and Production Monitoring tools include Crimp Height Micrometers and a Pull Tester but have expanded to include:

  • Crimp Force Monitoring.
  • Crimp Cameras for automated cut, strip and crimp.
  • Cross Section Analysis.
  • Digital Imaging.
  • Networking Process Equipment.
  • Data Collection and Reporting.
C&S CFM-Lite

It is very important to use these tools to ensure repeatable crimping that meets the terminal supplier’s specifications. And to validate to the crimp specifications. Having a method to collect this information can provide the means to analyze and document the crimp process.

WireProcess Specialties is pleased to announce DocuCrimp. DocuCrimp is part of the suite of services provided through Crimp Quality Solutions. DocuCrimp is a single page report of a wire to terminal crimp and includes:

  • Terminal and Wire Data.
  • Top and Side View Images.
  • Cross Section Image.
  • Pull Test Results and a force chart.
  • Data including: Conductor Crimp Height and Width and Conductor Compression. Results can be compared to crimp specs from the supplier (if available).

DocuCrimp is a snapshot of the terminal crimp based on the equipment setup, materials and assembly methods at a point in time. As these elements change so can the results so we recommend reporting to be done on a regular basis, based on the volume of crimps processed.

DocuCrimp is priced on a single report basis but can be packaged in multiple packs and annual contracts.

For more information, please click here to start the dialogue.

Conductor Crimp Width. An Important Quality Factor.

Terminal Crimp Quality is one of the most, if not the most critical factors in a wire assembly. Your wire assembly has many connection points and most have a connector to facilitate this connection. It only takes one bad connection to render an entire electrical assembly in-operable.

The wire to terminal crimp is made up of several elements. Each element has it’s own process capability. The crimp itself has physical factors which comprise an acceptable electrical connection and mechanical strength. These are repeatable factors which can be validated and monitored.

Two measurements are used most in almost all wire harness factories: Conductor Crimp Height and Pull Test. 

Conductor Crimp Width is also an important factor when considering overall crimp quality. But how does it fit in with the measurements above?

Crimp Tools are engineered and produced to form a terminal around a wire. Each crimp tool set (Conductor and Insulation punch and anvil) have a profile which produce the desired crimp shape. The wire and terminal are pressed together to assure the conductor strands are deformed at a proper compression ratio while achieving acceptable mechanical strength.

A terminal typically has a few wire sizes that can be crimped without compromising electrical integrity or mechanical strength. The crimp applicator has a dial that sets the conductor and insulation crimp height to the rated wire size.

Micro-Adjustment of Crimp Press.

The Conductor Crimp Width is not adjustable and is the same for all wire sizes within a terminal’s wire range. On top of the dial described above, crimp height is further adjustable to a limited extent by the shut height adjustment on the press.

Over time, tools wear. And as those tools wear, the ability to maintain the required physical measurements (height and width) are compromised. Although small adjustments in shut height can compensate for tool wear, the tool width is fixed. And the sides of the crimp tool profile will wear to the point where the crimp height to width ratio is not met. And following is a reduction in crimp compression.

Maintaining Conductor Crimp Height and Width is critical to assuring the proper conductor compression. Replacing tooling before the crimp height and width are compromised is very important. Despite the tendency to defer to the economics of tool costs and use tooling past their ability to maintain the proper measurements. Deferring to the latter raises the risk of crimp failure in the field.

Conductor Crimp Width Measurement

Measuring conductor crimp width should be a parameter that maintenance tracks to determine when tools should be replaced. Conductor Crimp Width is measured using a dial caliper or Blade Micrometer.

A well equipped factory includes well maintained and capable processing equipment. An equipped factory should also include validation and monitoring tools to assure repeatable quality. But even the best processing tools and quality tools are completely worthless without adequate worker training. Training for the equipment and tools but also the quality standards and measurements. For the crimp process, Crimping Solutions by WireProcess Specialties provides end to end support for the terminal crimp process. Visit Crimping Solutions or Connect to WireProcess to get started.

Network Integration. Covering All the Bases.

We are living in an age where communication between people is real time and instant. Now you can communicate across the globe with anyone, at any time just by picking up your favorite device.

Machines are also capable of talking to one another. What once was science fiction, is now a reality. Phrases such as IOT (Internet of Things) and AI (Artificial Intelligence) are a regular part of our vocabulary. We still have a long way to go before the Smart Factory becomes a reality across all industries. But the pieces are now available to create the factory of today and tomorrow. But like all areas of development in a company, laying out the integration starts with the right plan. And all plans require the right knowledge and the right people to ensure successful launch and operation. So where do you start? You always start with the Why.

Why Should You Network your Processes?

We are living in an area of extreme complexity. So much complexity, the average person cannot deal with the breadth of details required. So our ultimate goal should be to create simplicity out of complexity.

Our ultimate goal should be to create simplicity out of complexity.

Most tasks have some repeatable components to them. Components that can be automated so the main task can be completed with more efficiency.

Every process has its human element. When workers process their assigned task, two things can occur: errors and simple bias. Removing as many points where errors can occur is a critical factor in network and automation. Considering the following points:

  • Selecting raw materials and processing tools. Have the right tools and materials have been selected?
  • Are the processing instructions clearly laid out?
  • Is Quality data available and as important, is it the current revision?

When a process has been in place for many years, workers become comfortable with that process. So much that bias can enter in. In the case of product quality, who makes a decision what is  an acceptable quality component? Who decides whether to place the component in the good or reject pile? And how can you be assured that the rejects are not placed as part of good production?

Removing simple bias and reducing causes of error are reasons for Network Integration.

What about process tool capability? You depend on machines to process your materials into a quality component. These machines require routine maintenance and parts replacement. Some considerations:

  • Are your machines capable of repeatable processing? Is there a process in place to ensure process capability?
  • What is the life span of consumable tools (cutters, punches, forming tools etc.). Do you have a process in place to replace consumable tools to ensure process capability?
  • Do you have a system to enforce routine machine maintenance and consumable tool replacement?

All of these factors are why you need to consider Network Integration. Let’s consider the critical factors in your planning and integration process.

Identifying the Processes to Integrate.

Integrating as many factory processes is important. Most processes are different so a common system of communication between machine processes is key,

In the case of a typical wire harness factory, here are a few examples of processing systems:

  • Bench Top Terminal Crimp Machines.

  • Ultrasonic Welders (Wire Splice and Terminal to Wire Welders). Telsonic TS3 pictured below.

  • Wire Twisters.
  • Automated Wire Processing Machines.

A common system of communication between machine processes is key.

Platform Independence

Your factory will not only have different processes being used, often you have machines of the same processing type from different vendors. When you introduce a new vendor solution, you don’t simply throw out what you have used in the past. So in reality, you can have older process machines operating next to newer technology from the same and often different companies.

Competing companies may have their own solution. But does that solution talk to machines from other companies? Communication Systems must cover all machines whether they are older legacy systems or newer systems from different vendors.

Platform independence is critical.

Connecting Processing Machines and Quality Validation/Monitoring Systems.

You should be considering networking not just your processing machines for communicating process instructions and collecting valuable processing data .But also connecting quality validation and monitoring processes. In the case of Wire Harness Processing and the critical process of terminal crimping:

    • Crimp Height Micrometers (Conductor Crimp Height).
    • Blade Micrometers or Calipers (Conductor Crimp Width and Insulation Crimp).
    • Crimp Cross Section Analysis.
    • Crimp Force Monitoring.
    • Crimp Cameras.

C&S MPN100 Network for Benchtop Crimp Presses

These and other tools are important to ensure production starts with a validated process. And to monitor the production process for good output and to remove defects from the production stream.

Let’s face it, you don’t have all the answers. That’s why you need external support. Selecting the right companies to partner with is an important first step. Companies who are able to consider your unique requirements. Companies that have highly knowledgeable and experienced personnel to provide guidance. Along the full journey of your plan.

Connect Your Way with WireProcess Specialties to hear how our Global Technology Partners are your answer to your processing problems. We specialize in WireProcessing Solutions and Crimping Solutions.

Crimp Force Monitors: Factors When Implementing In-Process Monitoring.

We have written about Crimp Force Monitors (CFM) many times over the past few years. The Crimp Force Monitor is a critical tool that provides real time monitoring of the crimp process.

Crimp Monitors can detect quality issues with upstream processes such as wire. Also Crimp Monitors provide valuable information on equipment conditions and variability in Crimp Tool Setup.

In this article we are going to discuss some of the important considerations for implementing a Crimp Monitoring Program. Whether it is on an automated cutter like the Megomat 600 or a benchtop crimp press, getting started properly will better ensure a successful implementation.

The first and most important point when implementing a CFM program is to understand what CFM’s are not.

Crimp Force Monitors do not solve your crimping problems. They will bring quality problems to the surface, problems you might not know actually exist. Awareness of issues in crimping is the first step to a consistent and repeatable crimp process. It is common when using Crimp Monitors for the first time to blame the Monitor when a crimp application experiences frequent CFM alarms.

Crimp Monitors do not solve your crimping problems, that is your job.

Culture Change. Consider this fact: things will be different after implementation. How you approached crimp quality before will change. This is a whole company effort not just the domain of a few quality people. Workers on the plant floor will need to be trained. Attitudes will need to change. Consistency is king. No more adapting to make it work, CFM’s require consistency in order to separate process noise (external variables) with the consistent factors and you need to work to eliminate those variables.

No Crimp Set up is identical.  Treating all crimp application as equal will lead to problems. Wire/Terminal match, crimp tool shape and condition are variables that differ from application to application. Some are naturally more sensitive than others.

Understanding the five elements of a crimp. A typical terminal crimp is comprised of five elements: Wire, Terminal, Operator, Applicator and Crimp Press. The match between the wire and terminal is critical. Mismatched terminals and wire can cause piece to piece variation due to the movement of the wire in the terminal during the crimp process. Crimp presses that are not maintained with loose ram movement and worn ram adapters/base plates is also a source of piece to piece variation.

Constantly improving the process. Identifying problem applications and prioritizing them for process improvement is important. Employing analysis tools can help to uncover core issues that cause inconsistencies. Cross Section Analysis is an essential part of quality improvement efforts. Headroom Analysis identifies the sensitivity of the crimp process based on the force to crimp the terminal with and without the wire. The C&S CFM-Lite includes built in Headroom Analysis.

C&S CFM-Lite

Creating a repeatable validation process. Validating your crimp process is a critical step. Considerations:

  • The right terminal and wire for the circuits being produced.
  • The right applicator tooling and just as important, well maintained and production ready tooling.
  • A Crimp Press that provides repeatable shut height and crimp force. Maintained and free of debris.
  • Calibrated Measuring Tools including:
    • Crimp Height Micrometers (Conductor Crimp Height)
    • Blade Micrometers (Conductor Width and Insulation Height and Width).
    • Pull (Tensile)Tester.
    • Cross Section.
    • Bend Angle (if applicable).

A system to record and maintain validation and in process measurements. This could include a manual record keeping system. Although cost effective, there are risks in workers transposing numbers incorrectly. Also pulling the wrong materials and tooling. In an age of the connected factory, consider network connected equipment and measurement tools that force critical validation elements to be checked.

Quality Parameters. Who makes the decisions?  Crimp Monitors use tolerances which are applied around a teach-in value (average of test pieces measured prior to production). These tolerances can be adjusted to suit each crimp application. Which can make the measurement of crimp force more or less sensitive. Access to the tolerance setting can be open or restricted.

When tolerance setting is left open, there is a risk of un-trained workers making adjustments that can allow for defective crimps to pass undetected. This can create a behavior we call the CFM Cycle.

Avoid the CFM Cycle. Restrict access to the tolerance setting to trained personnel. Address problem applications with analysis tools such as Headroom and Cross Section.

Summary. Creating an implementation process at the start prevents problems on the factory floor and with Crimp Quality.

Crimp Quality Solutions is a great place to start. With end to end support for the terminal process, we provide the knowledge and resources you need. Connect with WireProcess to start the conversation.

Bend Angle. Addressing Insertion Force in Connectors.

A wire harness has a few basic qualities, critical to performance and longevity of the device it is installed into. Low electrical resistance through the harness reduces heat and improves overall electrical performance. But as important is the ease of installation and the effect installation may have on electrical performance.

As we consider the critical elements of wire harness assembly and in particular the wire to terminal crimp process, a number of variables can make or break the performance of the most important aspect of a wire harness. Bend Angle is one of those variables which is receiving more scrutiny as we work to improve overall wire harness quality.

So what is Bend Angle?

Bend Angle is the condition caused by the crimping of the terminal. The pressure on the terminal from the press (and crimp applicator) causes the terminal to extrude outward. Extrusion is a natural occurrence of material (wire and terminal) being formed under pressure. The terminal actually can lengthen slightly during the crimp process. But excessive pressure can also cause the terminal to bend upward, in the shape of a banana. The banana shape is a measured attribute which is called Bend Angle.

So why is Bend Angle critical to the wire harness? It is important for two primary reasons.

First in the fit and function of terminals loaded into a multi-wire connector. When terminals are not straight, there can be mis-alignment between the pin and receptacle. On it’s own, one matching terminal pair can be harder to mate when the terminals are fixed in a housing. Consider the compounding effect of inserting multiple (unmatched) mating pairs in a housing. This can cause installation issues for the customer who is installing the wire harness.

Second is the potential of high electrical resistance at the mating point between the two terminals. We work to reduce electrical resistance of the terminal crimp by the proper crimp and crimp tool design along with a wire range rated for the crimp. Even with close attention to the proper wire/terminal match and recommended crimp height, high resistance can occur at the mating point.

It should be noted that bend angle is not as a factor with terminals that are not encased in a connector. More ‘forgiveness” in installing terminals that are not forced to mate in a confined space.

Reducing Bend Angle.

As mentioned extrusion during the crimp process is normal and some bend angle can occur. But ultimately reducing bend angle is important. Let’s consider some of the factors that can cause bend angle.

  • Crimp Height Too Low.
  • Worn Crimp Tools.
  • The Wrong Crimp Tools.
  • The Wrong wire size for the terminal.

Not only can these issues cause bend angle, they can also affect the electrical performance of the crimp.

Measuring Bend Angle and Parallelism.

There are actually two possible measurements: Bend Angle and Parallelism.

Bend Angle is measured from the top surface of the conductor crimp to the terminal body. Bend Angle can be measured from the top and side as pictured.

Bend Angle Side View

Bend Angle Top View. 

Parallelism is a “go/no go” measurement. Parallelism ensures all points are within a tolerance window in relation to a datum point. In the case of a terminal, measuring parallelism of both the insulation and wire crimp is possible. The datum line is placed on  the conductor body and a set of parallel lines are placed on the wire and insulation crimps. The wire and insulation crimp must be enclosed within the parallel lines.


Bend Angle and Parallelism dimensions are established by the terminal supplier. And by the customer when supplier dimensions are not available

Bend Angle is an emerging issue which is expected to be introduced into crimp standards such as USCAR-21. Regardless the existence of a mandated standard of not, the condition exists for multi pin/receptacle connectors. If high connector insertion or electrical resistance are an issue, perhaps evaluating bend angle is a variable that could be checked.

Need to measure Bend Angle? We are prepared to help. Whether in house capability or ad hoc requirements, we can supply your own solution or provide this as a service through Crimp Quality Solutions. Connect Your Way to WPS to find out more.

Terminal Pull Test. Putting it into Perspective.

Pull Testing, measuring the Tensile Test of a wire to terminal crimp has been a measurement of quality since the advent of pressing a wire to a terminal for electrical assembly.

Pull Test Methods have varied from weights, fish scales, portable and benchtop manual and motorized digital. I have even heard stories of an acceptable pull test being performed by pulling the terminal by the teeth. A dentist’s nightmare.

Given today’s demands for higher reliability and failure rate approaching zero, how does the Pull Test process fit in with the other testing methods being deployed? Are you even performing pull tests properly? This article will answer these questions and more as we put Pull Testing Into Perspective.

Pull Testing Defined.

Pull Test is a destructive test designed to determine the mechanical strength of a terminal crimp. A good mechanical crimp assures the crimp can withstand the normal handling and installation process.

Considering a cross section of quality standards, typical process parameters for pull test include:

  • Disengaging the insulation support so the pull force reading is based on the wire crimp alone.
  • Pull at a constant rate of 50 to 250mm/minute.
  • Wire should be taut prior to applying pull force. Remove slack from the wire.

But Pull Test is not the whole picture.

Pull testing is not a measurement of electrical performance. A quality crimp includes a secure mechanical crimp with low electrical resistance.  Low electrical resistance comes from a crimp with a wire under compression. Terminal suppliers validate crimps by optimizing the crimp barrel size to match the wire. Crimp tool profile is also a critical factor. Using the proper crimp tool profile, the wire and terminal are compressed together. Pull and electrical resistance reading are made and the recommended conductor crimp height is established and published. It is the responsibility of the end user to follow the crimp guidelines in order to assure an optimum performing crimp. Which includes conductor crimp height as a primary measurement with mechanical pull test as a secondary standard.

A few facts to consider:

  • Pull test and electrical resistance measurements rarely follow in tandem. Typically pull strength peaks before electrical resistance. Therefore it is possible to meet a minimal pull test while not optimizing electrical resistance. There will always be a compromise between Electrical Resistance and Pull Test.
  • Pay careful attention to how the wire separated from the terminal. This is an indication of the wire compression. Strands completely broken at the wire crimp indicate over compression. Conversely strands which completely pull out of the wire crimp still in a round shape indicate severe under-compression. Crimps with good compression should primarily break outside of the wire crimp.

Depending on Mechanical Strength as your primary crimp quality measurement leaves you open for premature crimp failure. And the consequences can be wide ranging. Even a single failure can be costly. Large scale recalls (not uncommon today) can cripple even a large company.

Crimp Quality Solutions provides the resources to take your crimp processing to the next level. Connect with us today.

Objective Evidence Part Two: Do you really know?

Assumptions may be a tool used in financial forecasting in absence of actual facts but is hardly a good practice to apply to actions around product quality.

This is the conclusion of our series on Objective Evidence as it applies to the terminal crimp process.

Objective Evidence is an important concept to ensure actions from decisions are causing positive results. To review from part one:

Objective Evidence defined: “Information based on facts that can be proved through analysis, observation and other such means of research.” Source:

In this article we explore the production and process monitoring of the terminal crimp process. Ensuring the pre-production validation process continues into production and controls that are in place, effectively reduce the chances of non-conforming assemblies leaving the production facility.

Assuming everything is working simply because you implemented a new monitoring process can lead to unacceptable outcomes. From material rework locally and goods returned from a customer to product recalls. Non conforming (or poorly performing) materials that are introduced into the supply stream can be costly, in monetary and non-monetary ways.

The CFM cycle (click to view video) is an example of an incorrect assumption that simply introducing a crimp monitor on it’s own does not guarantee non-conforming crimps. The reality is Crimp Monitors Do No Solve Your Crimping Problems.

Here are a few important areas to check:

Are your Crimp Monitors detecting crimp defects?

The ability to effectively monitor crimping using a Crimp Monitor (CFM) is affected by a number of factors. The terminal/wire match is one factor, considering Headroom which can influence the sensitivity of crimp monitoring. Equipment condition is another.

  • Duplicate an crimp error like strands missing. Determine if the threshold of the crimp defect detection is acceptable based on your requirements.

Strand Missing from Crimp

Crimp Monitors provide real time monitoring of the crimp process and as stated above the sensitivity of the monitoring process is affected by each element of the crimp process. The wrong tolerance setting whether set too high intentionally or by mistake increases the risk of introducing non-conforming crimps into your product.

Visual and Physical Measurements.

Take a batch of processed wires and fan them out. Check wire position in the crimp to ensure insulation is not in the wire crimp, the bell mouth and brush positions are correct. Measure wire crimp height and pull test and confirm they meet the manufacturer’s specs.

Crimp Height and Pull Test

Operator Bias: Removing Subjectivity from the Crimp Process.

Let’s face it. After a long period of time, operators and set up people can form their own bias towards quality. Left unchecked, this bias can be a problem in improving process quality. And be a process variation itself.

Lock down the validation and monitoring process. Connect your bench and automated crimp machines into a network. Process parameters do not change over time and should be stored in a central database. Create a process where validation of process parameters is required before machines are released for production. Then monitor the process to ensure ongoing conformity to the validated process parameters.

C&S MPN-100 Network

The stakes are never higher than they are today. Exposure to liability from non-conforming products can be reduced by following a repeatable process.

Crimp Quality Solutions is end to end support for the terminal crimp process. Connect with WPS to get started.